CAPACITY EXPANSION INVESTMENT PLANNING MODEL

CHE 5480- University of Oklahoma School of Chemical Engineering and Materials Science

Prof. M. Bagajewicz

Capacity Expansion Planning

Deterministic Planning

Process Planning Under Uncertainty

DETERMINE: ► Network Expansions

| Timing | Sizing | Location |

▶ Production Levels

OBJECTIVES: Maximize Net Present Value

Capacity Investment Planning

Design Variables: to be decided before the uncertainty reveals

$$x = \{Y_{it}, E_{it}, Q_{it}\}$$

Y: Decision of building process *i* in period *t*

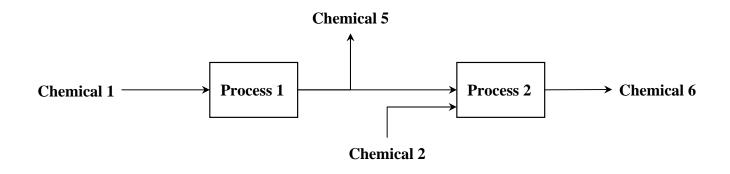
E: Capacity expansion of process i in period t

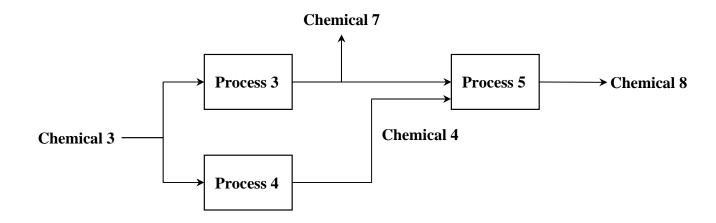
Q: Total capacity of process i in period t

Control Variables: selected after uncertain parameters become known. Assume them known for the time being!!!!

$$y_s = \{S_{jlt}, P_{jlt}, W_{it}\}$$

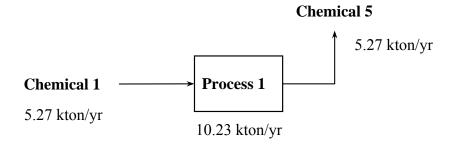
S: Sales of product j in market l at time t and scenario s

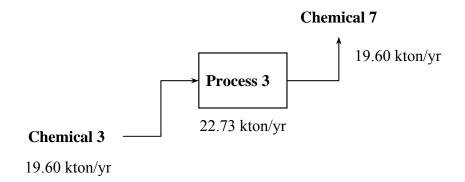

P: Purchase of raw mat. j in market l at time t and scenario s


W: Operating level of of process i in period t and scenario s

Example

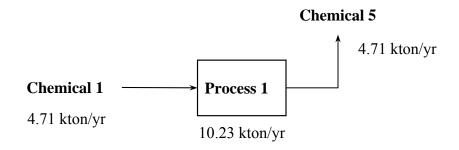
▶ Project Staged in 3 Time Periods of 2, 2.5, 3.5 years





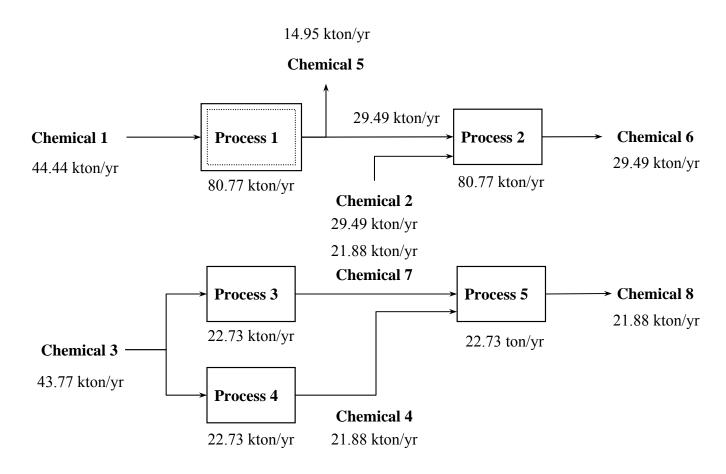
Solution

Period 1 2 years



Solution

Period 2 2.5 years



Solution

Period 3 3.5 years

SETS

I: Processes i, =1,...,NP

J: Raw materials and Products, j=1,...,NC

T: Time periods. T=1,...,NT

L: Markets, l=1,..NM

 Y_{it} : An expansion of process I in period t takes place (Yit=1), does not take place (Yit=0)

 E_{it} : Expansion of capacity of process i in period t.

VARIABLES

 Q_{ii} : Capacity of process i in period t.

 W_{ii} : Utilized capacity of process i in period t.

 P_{ilt} : Amount of raw material/intermediate product j consumed from market l in period t

 \vec{S}_{ilt} : Amount of intermediate product/product j sold in market l in period t

 η_{ii} : Amount of raw material/intermediate product j used by process i

 μ_{ii} : Amount of product/intermediate product j consumed by process i

 γ_{ilt}° : Sale price of product/intermediate product j in market l in period t

 $\check{\Gamma}_{jlt}$: Cost of product/intermediate product j in market l in period t

PARAMETERS

 δ_{it} : Operating cost of process i in period t

 α_{it} : Variable cost of expansion for process i in period t

 β_{it} : Fixed cost of expansion for process i in period t

 L_t : Discount factor for period t

 E_{ii}^{L}, E_{ii}^{U} :Lower and upper bounds on a process expansion in period t

 a_{jl}^{L} , a_{jl}^{U} : Lower and upper bounds on availability of raw material j in market l in period t

 d_{ilt}^{L}, d_{ilt}^{U} : Lower and upper bounds on demand of product j in market l in period t

CI, : Maximum capital available in period t

NEXP; maximum number of expansions in period t

OBJECTIVE FUNCTION

$$Max \ NPV = \sum_{t=1}^{NT} L_t \left(\sum_{l=1}^{NM} \sum_{j=1}^{NC} (\gamma_{jlt} S_{jlt} - \Gamma_{jlt} P_{jlt}) - \sum_{i=1}^{NP} \delta_{it} W_{it} \right) - \sum_{i=1}^{NP} \sum_{t=1}^{NT} (\alpha_{it} E_{it} + \beta_{it} Y_{it})$$

DISCOUNTED REVENUES

INVESTMENT

 Y_{it} : An expansion of process I in period t takes place (Yit=1), does not take place (Yit=0)

 E_{ii} : Expansion of capacity of process i in period t.

 W_{it} : Utilized capacity of process i in period t.

 P_{ilt} : Amount of raw material/interm. product j consumed from market l in period t

 $\vec{S_{ilt}}$: Amount of intermediate product/product j sold in market l in period t

I: Processes i, =1,...,NP

J: Raw mat./Products, j=1,...,NC

T: Time periods. T=1,...,NT

L: Markets, l=1,..NM

 γ_{ilt} : Sale price of product/intermediate product j in market l in period t

 Γ_{ilt} : Cost of product/intermediate product j in market l in period t

 δ_{it} : Operating cost of process i in period t

 α_{it} : Variable cost of expansion for process i in period t

 β_{it} : Fixed cost of expansion for process i in period t

*L*_t: Discount factor for period t

LIMITS ON EXPANSION

$$Y_{it}E_{it}^{L} \leq E_{it} \leq Y_{it}E_{it}^{L}$$

$$i=1,...,NP$$
 $t=1,...,NT$

TOTAL CAPACITY IN EACH PERIOD

$$Q_{it} = Q_{i(t-1)} + E_{it}$$

$$i=1,...,NP$$
 $t=1,...,NT$

LIMIT ON THE NUMBER OF EXPANSIONS

$$\sum_{t=1}^{NT} Y_{it} \le NEXP_i$$

$$i=1,...,NP$$

LIMIT ON THE CAPITAL INVESTMENT

$$\sum_{i=1}^{NP} (\alpha_{it} E_{it} + \beta_{it} Y_{it}) \leq CI_t$$

$$t=1,...,NT$$

 Y_{ii} : An expansion of process I in period t takes place (Yit=1), does not take place (Yit=0)

 E_{it} : Expansion of capacity of process i in period t.

 Q_{it} : Capacity of process i in period t.

I: Processes i, =1,...,NP

 $J: Raw\ mat./Products, j=1,...,NC$

T: Time periods. T=1,...,NT

L: Markets, l=1,..NM

NEXP_t: maximum number of expansions in period t

 α_{it} : Variable cost of expansion for process i in period t

 β_{it} : Fixed cost of expansion for process i in period t

 E_{ii}^{L}, E_{ii}^{U} : Lower and upper bounds on a process expansion in period t

UTILIZED CAPACITY IS LOWER THAN TOTAL **CAPACITY**

$$W_{it} \leq Q_{it}$$

$$i=1,...,NP$$
 $t=1,...,NT$

$$\sum_{l=1}^{NM} P_{jlt} + \sum_{i=1}^{NP} \eta_{ij} W_{it} \leq \sum_{l=1}^{NM} S_{jlt} + \sum_{i=1}^{NP} \mu_{ij} W_{it}$$

$$i=1,...,NP$$
 $t=1,...,NT$

$$a_{jlt}^{L} \leq P_{jlt} \leq a_{jlt}^{U}$$
 $d_{jlt}^{L} \leq S_{jlt} \leq d_{jlt}^{U}$

$$d_{jlt}^{L} \leq S_{jlt} \leq d_{jlt}^{U}$$

$$j = 1,...,NC$$
, $t = 1,...,NT$, $l = 1,...,NM$

$$E_{it}, Q_{it}, W_{it}, P_{ilt}, S_{ilt} \geq 0$$

$$\forall i, j, l, t$$

INTEGER **VARIABLES**

$$Y_{it} \in \{0,1\}$$

i=1,...,NP t=1,...,NT

 Y_{ii} : An expansion of process I in period t takes place (Yit=1), does not take place (Yit=0)

 E_{it} : Expansion of capacity of process i in period t.

 Q_{ii} : Capacity of process i in period t.

 W_{it} : Utilized capacity of process i in period t.

 P_{ilt} : Amount of raw material/intermediate product j consumed from market l in period t

 S_{ilt} : Amount of intermediate product/product j sold in market l in period t

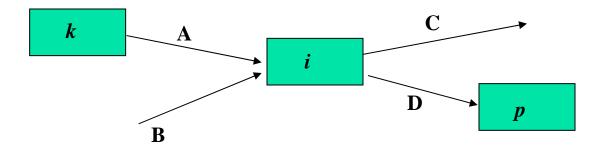
I: Processes i, =1,...,NP

 $J: Raw\ mat./Products,\ j=1,...,NC$

T: Time periods. T=1,...,NT

L: Markets, l=1,..NM

 a_{il}^{L}, a_{il}^{U} : Lower and upper bounds on availability of raw material j in market l in period t


 d_{ilt}^{L} , d_{ilt}^{U} : Lower and upper bounds on demand of product j in market l in period t

MATERIAL BALANCE

$$\sum_{l=1}^{NM} P_{jlt} + \sum_{i=1}^{NP} \eta_{ij} W_{it} \leq \sum_{l=1}^{NM} S_{jlt} + \sum_{i=1}^{NP} \mu_{ij} W_{it}$$

$$i=1,...,NP$$
 $t=1,...,NT$

$$\sum_{l=1}^{NM} P_{Blt} + \eta_{kA} W_{kt} = \sum_{l=1}^{NM} S_{Clt} + \mu_{iD} W_{it}$$

$$\eta_{\textit{kA}}, \mu_{\textit{iD}}$$

Reference Component is C

"Stoichiometric" Coefficients